FU Chuanhai
[an error occurred while processing this directive]

    FU Chuanhai



    Fu Chuanhai  Ph.D. 
    Professor of School of Life Sciences

    Email: chuanhai@ustc.edu.cn 
    Tel: (+86) 551 63600805
    Office: 545 School of Life Sciences, 443 Huangshan road, Hefei, Anhui, China 230027

    Dr. Fu joined School of Life Sciences at the University of Science and Technology of China as Professor after he was granted the "1000Plan Program for Young Talents" award in 2015. From 2011 to 2015, Dr. Fu was a tenure-track Assistant Professor of Department of Biochemistry at the University of Hong Kong, and was a post-doctoral fellow in the Department of Cell and Developmental Biology at the University of Pennsylvania from 2006 to 2011. He obtained his undergraduate and doctoral degrees in cell biology from the University of Science and Technology of China in 2001 and 2006, respectively. He is interested in the molecular mechanisms underlying the organization and regulation of the microtubule cytoskeleton within the cells and how these mechanisms contribute to key biological processes such as chromosome segregation, cell division, and mitochondria dynamics.  

    Research key words: microtubule, mitochondria, mitosis

    (1) Microtubule dynamics

    Microtubules are hollow tubular structures composed of 13 protofilaments within which α-,β-tubulin heterodimers bind to one another in a head-to-tail fashion. This structural arrangement confers the physical properties of polarity and dynamics to microtubules and thus allows microtubules to have a wide range of cellular functions including transporting organelles, directing cell motility, and mediating chromosome segregation. It is often found that microtubule associated proteins (MAPs) are expressed abnormally, and/or mutated, in tumor cells, making MAPs highly relevant to tumorigenesis. Hence, our research efforts are focused on investigating how MAPs are involved in regulating microtubule dynamics and mediating formation of the cell-type specific microtubule arrays.

    (2) Mitochondria dynamics

    Mitochondria are the powerhouse of a cell, constantly undergoing fusion and fission and intimately interacting with the cytoskeleton. Mitochondria malfunctions are associated with neuron degenerative diseases, aging, and tumorigenesis. Employing high spatiotemporal resolution microscopy, yeast genetics, and biochemistry, we aim to reveal the molecular mechanisms underlying mitochondria dynamics and regulating microtubule-mitochondria interactions.

    (3) Mitosis

    Mitosis is a fundamental process of life. During mitosis, chromosomes are segregated and equally divided into two daughter cells. Mitosis errors are usually correlated with failures of chromosome segregation, leading to more severe problems such as genomic instability, birth defects and cancer. My laboratory is interested in understanding the fundamental molecular mechanisms underlying spindle and chromosome dynamics during mitosis. We combine yeast genetics, quantitative live-cell imaging, biochemical and cell biological approaches to dissect organization, dynamics and regulation of the spindle in the fission yeast Schizosaccharomyces pombe.


    · Postdoctoral researcher: Dr. Fan Zheng (The University of Hong Kong)

    · Technician: Dan Ding

    · Graduate students: Xiaoquan Lu, Juan Shen, Qian Wang, Fenfen Dong, Wenyue Liu, Xiaojia Niu

    Selected publications(26 in total):

    1) Li T, Zheng F, Cheung M, Wang F, Fu C*. 2015. Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner. Sci Rep. 5:11023 (*corresponding)

    2) Zheng F, Li T, Jin D, Syrovatkina V, Scheffler K, Tran PT*, Fu C*. 2014. Csi1p recruits alp7p/TACC to the SPB for bipolar spindle formation. Mol Biol Cell. 25(18):2750-60. (*corresponding)

    3) Zheng F, Li T, Cheung M, Syrovatkina V, Fu C*. 2014. Mcp1p tracks microtubule plus ends to destabilize microtubules at cell tips. FEBS Lett. 2014 Mar 18;588(6):859-65 (*corresponding) (cover story)

    4) Syrovatkina V#, Fu C#, Tran PT. 2013. Antagonistic spindle motors and MAPs regulate metaphase spindle length and chromosome segregation. Curr Biol. 23: 2423-9 (#Equal contribution)

    5) Fu C*, Jain D, Costa J, Velve-Casquillas G, Tran PT*. 2011. Mmb1p binds mitochondria to dynamic microtubules. Curr Biol. 21:1431-39 (*corresponding)

    6) Fu C, Ward JJ, Loiodice I, Velve-Casquillas G, Nedelec FJ, Tran PT. 2009. Phospho-regulated interaction between kinesin-6 Klp9p and microtubule bundler Ase1p promotes spindle elongation. Dev Cell 17: 257-67

    7) Fu C, Yan F, Wu F, Wu Q, Whittaker J, Hu H, Hu R, Yao X. 2007. Mitotic phosphorylation of PRC1 at Thr470 is required for PRC1 oligomerization and proper central spindle organization. Cell Res 17: 449-57

    8) Fu C, Ahmed K, Ding H, Ding X, Lan J, Yang Z, Miao Y, Zhu Y, Shi Y, Zhu J, Huang H, Yao X. 2005. Stabilization of PML nuclear localization by conjugation and oligomerization of SUMO-3. Oncogene 24: 5401-13

    See a full list at http://www.researcherid.com/rid/G-8303-2016 

    Research Opportunities:

    Our lab is equipped with multiple advanced imaging systems including a spinning disk confocal microscope. This enables trainees to conduct cutting-edge research projects. We are seeking motivated undergraduates, postgraduate students, and post-doctoral fellows to join our research team. Applicants with expertise in molecular and cellular biology are particularly welcome. Please contact Dr. Fu Chuanhai (chuanhai@ustc.edu.cn) directly with your CV and a description of your previous research experience.

  • more